CS231N Lec. 4 | Backpropagation and Neural Networks
in Studies on Lecture-Review
please find lecture reference from here1
CS231N Lec. 4 | Backpropagation and Neural Networks
Recap gradient
- Numerical gradient
- Analytic gradient
Computational graphs
linear classification과 같은 예시.
Backpropagation
Gradient
- Concept node f 에 대해서 input(좌측)은 local gradient, output(우측)은 upstream gradient. [local gradient] x [upstream gradient]
실제로 활용 할 때 에는 이렇게 하나의 묶음으로써 자주 사용함. 그렇다면 왜 굳이 하나씩 쪼개가면서 했는가? 에 대한 생각.
gradient 각 연산의 의미 add : distributor mul : switcher (scaler) max : router
vectorized example
gradient of L2 norm is just simply take derivate it.
gradient of dot product is
신경망
activation function
Lecture(youtube) and PDF ↩